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C O N V E C T I V E  I N S T A B I L I T Y  O F  A I R  I N  S N O W  

M. K.  Z h e k a m u k h o v  a n d  L. Z. S h u k h o v a  UDC 532.5 

Convective instability of air in the pores between ice crystals in snow is considered. In the 
Boussinesq approximation, a system of equations that describes the origin of thermal convection 
within the snow thickness is derived. It is shown that for snow, as for a liquid, there is a 
criterial number analogous to the Rayleigh number that determines the origin of air instability 
in snow. The contribution of natural convection of air to the heat- and mass-transfer processes 
in snow is estimated and possible reasons for the considerable scatter of reported experimental 
data on the thermal conductivity and diffusivity of snow are discussed. 

1. T h e r m a l  C o n d u c t i v i t y  and  D i f f u s i v i t y  o f  Snow. We consider a snow with macroscopically 
stationary contained air, which fills the pores between the ice crystals composing the snow skeleton. In the 
presence of a tempera ture  gradient, the steam migration in snow from more heated to less heated places occurs. 
The steam transfer proceeds via molecular diffusion, and the macroscopic gradient of s team concentration 
depends solely on the tempera ture  gradient. Indeed, the duration of steam-concentration equalization in the 
pores between the ice crystals  is r = 62/Dn, where 5 is the typical size of the pores and Dn is the diffusivity 
of water molecules in air, which for 6 = 0.1 cm and Dn = 0.2 cm2/sec gives about  0.05 sec. Thus,  the steam 
in snow pores under actual  conditions is in a near-saturated state, and, hence, its concentration is a function 

of only one parameter,  the  temperature. 
Based on the Clausius-Clapeyron equation, the approximate dependence of the saturat ing steam den- 

sity Pn on the tempera ture  ~ (in Celsius degrees) is given by the formula 

p,, ~ p;~(1 - LO/(enT~o)), (1.1) 
where p~ is the saturat ing steam density at 0~ To = 273 K, Rn is the gas constant of the steam, and L is 

the specific heat of s team sublimation. 
The heat flux throug  h unit area is j ~ n2/3(~ 2, where n is the number  of pores in a unit volume 

related to the snow porosi ty  f by the formula n = f / n  3. Hence, we have j .,, f2/3. With allowance for this 

dependence, the heat flux through unit area can be written as q = - (AsV8 + f2/3LDnVpn) = -A * V T .  Here 
As is the thermal conduct ivi ty  of snow, f is the snow porosity, V is the gradient operator,  and A* is the 

effective thermal  conduct ivi ty  of snow: 

~" = ~s(1 + Lp* f2/aDn/(t~T2oAs)). (1.2) 

For f = 1, formula (1.2) coincides with the analogous formula obtained by Sulakvelidze [1]. 
By writing the equat ions of thermal conduction and steam diffusion in snow with allowance for relation 

(1.1), it can be easily shown that  the effective diffusivity D* of steam in snow coincides with its thermal 
diffusivity X* = A*/(pc)s, where (pc)s is the heat  capacity of snow per unit volume. From here, it follows 
that  the field of concentrat ion of steam molecules in snow is determined by the temperature  field, and the 

process of s team diffusion in snow is identical to heat transfer. 
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It  should be noted that, by inserting typical values of the parameters into the  right side of equality 
(1.2), one can easily find that the second term in parentheses equals only several hundredth  parts of unity. 
From here, it follows that,  in the absence of convection, the contribution of the condensation processes to 
thermal conduction and diffusion in snow is insignificant. 

The  calculated diffusivities D* for different types of snow amount  to 4- 10 -3 cm2/sec [2]. Nevertheless, 
numerous experimental data on D* obtained both in laboratory and field conditions are within the range 
from 0.13 to 1.1 cm2/sec and in most cases exceed the diffusivity of steam molecules in air [3]. 

Such abnormally high values of thermal conductivity and diffusivity of s team in snow can be explained 
by the fact tha t  the convection in air contained in snow was involved in these experiments.  

2. E q u a t i o n s  o f  T h e r m a l  C o n v e c t i o n  in Snow.  Snow is a porous medium,  which Consists of a 
rigid skeleton formed by randomly located ice crystals and pores filled with air, which can freely flow through 
them both  inward and outward. In the presence of a temperature gradient, a convective flow of the air filling 
the pores may arise in snow. In the filtration theory, the macroscopic filtration velocity u is used. It is related 
to the mean velocity of air particles in the porous medium V by the relation u = f Y .  

The  macroscopic flow of air in snow is described by a system of fluid-dynamic equations that include 
the cont inui ty  equation, the equation of motion, and the heat-transfer equation. 

By analogy with the equations of motion for damp soil with account of friction between the solid and 
liquid phases [4], the equation of motion of air in snow can be writ ten as 

d V  
f P  d---f- f • p + f p g + F ,  

where p is the air density, 9 is the free-fall acceleration, and F is the force exerted on unit mass of air by the 
porous medium. According to the Darcy law, this force normalized to unit volume of snow equals f l ~ V / a ,  

where # is the air viscosity and a is the snow permeability. 
Thus,  the equation of motion acquires the form 

O V  1 v 
Ot + ( V ~ Y ) V  = - -  ~7p + g _ _ V ,  (2.1) p a 

where v is the kinematic viscosity of air. 
To properly write the equation of heat inflow, we note that  the condensation and evaporation processes 

proceeding with participation of the steam contained in snow and accompanying the flow of air through the 
snow skeleton are a distinctive feature of snow compared to water-saturated sand soil. These processes must 
be taken into account in formulating the heat-balance equation. 

Next,  we assume that the air that  flows through the snow all the t ime remains saturated. Then, 
the total  heat  flux through unit area JT  caused by the conductive heat transfer through the snow skeleton 
and the heat  transfer through the pores filled with the steam-air  mixture can be represented in the form 

JT = - A * ~ T T  + fpcpOV + L f p n V ,  where ap is the heat capacity of air at constant pressure. 
In this case, the heat-transfer equation acquires the form 

00 
O--t + M V ~ 7 0  = xAO,  (2.2) 

/pep L2p * 
where A is a Laplacian and M = (1 + B ~ pscs RnT2pc  p } is a coefficient. 

Finally, the continuity equation is 

Op 
0-7 + div ( p V )  = 0. (2.3) 

System (2.1)-(2.3) must be supplemented by the equation of state of the medium p = p(T ,p ) .  

We consider small deviations from the equilibrium state tha t  are described by the temperature, pres- 
sure, and density perturbations (0 t, p', and p~, respectively) and by the velocity V .  Then  the linear system 
of equations for thermal convection in snow in the Boussinesq approximation [5] is 

O V  1 ~p ,  u V + o~gt~' ez,  OOt . . . .  X A0 ,  d i v V  0, (2.4) Ot po a - ~  + M ( V V ( O ) )  = * ' = 
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where (0 / is given by the equation A0 = 0, ez is the unit vector directed vertically upward, and c~ is the 
coefficient of thermal expansion of air. 

In what follows, we restrict ourselves to the case where the snow is s i tuated between two horizontal 

planes z -- 0 and z = H tha t  have tempera tures  00 and 01, respectively, and 00 > 01. In this case, the 
s ta t ionary temperature field is described by the  formula {0)(z) = 00 - z(00 - 01) /H.  

Wi th  H, a/v ,  and X * / ( H M )  chosen as the unit length, time, and velocity, respectively, and pressure 
and temperature  per turbat ions  measured in units  of povx*/a and 00 - 01, the dimensionless form of system 
(2.4) is 

OV 
O---t - M V p  + R*Oez - V; (2.5) 

O0 
Pr* -~  = Y e z  + A0, div V = 0 (2.6) 

(the primes are omitted). Here, R* = agaHM(Oo - 01)/(vX* ) is a dimensionless parameter, which is an 
analog of the Rayleigh number  [6], and Pr* = (u/X*)(H2/a)  is an analog of the Prandt l  number. 

Thus, the natural convection in the snow bed is characterized by two dimensionless parameters, R* 
and Pr*. 

Following the t radi t ional  procedure of  [5], we eliminate the pressure p and the horizontal velocities V~ 
and Vy from Eqs. (2.5) and (2.6). To this end, we apply the operator  rot (rot) to Eq. (2.5) and project the 
resulting equation onto the  z axis. As a result, we obtain 

00 
0 AV. R 'A 1 0  + AVe, Pr* ~-~ = A0 + Vz, (2.7) 
Ot " 

where At = 02/Ox 2 + 02/Oy 2 is a planar Laplacian. 

Equations (2.7) allow partial  solutions tha t  describe the so-called normal disturbances exponential in 
t ime and periodical in the plane (x, y): 

V , ( z , y , z ) = V o ( z ) e x p [ A t + i ( k l x + k 2 y ) ] ,  O ( x , y , z ) = O o ( z ) e x p [ A t + i ( k l x + k 2 y ) ] .  (2.8) 

Substituting (2.8) into (2.7), we obtain the following amplitude equations: 

A(V d' - k2V0) = Yd' - k2Vo + k2R*00, ,k0Pr* = 0~' - k20o + Vo. (2.9) 

Here k 2 = k 2 + k 2 and the primes denote differentiation with respect to z. 
For equations (2.9), boundary conditions should be set, which reflect part icular  physical conditions. 

Below, some simplest types of such conditions are considered. 
(1) At both surfaces of the snow bed, fixed temperatures are set; hence, the temperature disturbances 

at them vanish: O(z) = 0; moreover the upper  and lower boundaries are impermeable: Vz(z) z=0.1 = 0. 
z=0.1 

Solutions of the types O0(z) = An sin (~rnz) and Vo(z) = Bn sin(rrnz) (n = 1, 2 , . . . )  satisfy these conditions. 
Substituting the above solutions into (2.9), we obtain a system of equations in AN and B~. The  

consistency condition for this system reduces to  the equality to zero of its determinant,  which yields A 2 + 
BA - C = 0, where B = 7r2n 2 + k 2 and C = 7r2n 2 - k2R*M/(Tr2n 2 -t- k2). In this case, the condition of growth 

of the disturbance ampli tude Re,~ > 0 reduces to the inequality C > 0; this means that  instability arises 
when the condition R** = MR* > (Tr2n 2 -t- k2)2/k 2 is fulfilled, i.e., the stabili ty thresholds depend on n and 

k. 
For a given n, those disturbances are most  unstable for which the function R*(k, n) has a minimum, 

OR*/Ok = 0, which gives km = 7rn. To this value of the wavenumber, R*(n) = 4rr2n 2 corresponds. With the 

growth of R**, the disturbances with n = 1 and wavenumber k = r become most  unstable, and tile threshold 

number R ~  at which instabili ty emerges is 47r 2. 
Thus, the condition for the appearance of convection in a snow bed of thickness H at a given temper-  

ature difference A0 = 00 -- 01 reduces to the inequality 

a M H g a A O / ( x * v )  > 47r 2. (2.10) 
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This result corresponds to the case where the snow surface is covered by a thin film impermeable to air. 
Under natural conditions, this s i tuat ion is widely met. For example, after a relatively warm sunny day on the 
onset of the night chill, snow crystals often freeze together, forming a thin transparent ice crust  tha t  arrests 
the damp air inside the snow bed. Wi th  further cooling, the tempera ture  gradient in the snow increases, thus 
promoting the onset of air convection in it. 

Condition (2.10) can be represented in the following more convenient form: 

AO/H > 47r2x*r'/(aMH2gcr). (2.11) 

If the tempera ture  gradient in the snow bed satisfies condition (2.11), air convection originates in it. 
(2) We assume that  the snow bed is permeable to air, i.e., the air freely escapes from the snow bed, 

rising upward. In this case, the horizontal velocities Vz and Vy may be thought of as vanishing at the upper 
surface of the snow bed; hence, by vir tue of the relation klV~ + k2Vy = (1/i)(dVz/dz), which follows from the 
continuity equation, we have Vz~(1) = 0. In addition, Vz(0) = 0. We also assume that  0(0) = 0 and 0'(1) = 0. 
It is apparent tha t  solutions of the type  

O(z) = Ansin 7r (2n+ 1)z Vz(z) = Bnsin 7r(2n+ 1)z (n=O, 1, 2, .) 
2 ' 2 "" 

satisfy the conditions. 
Tile above results remain valid on substituting (2n + 1)/2 for n. In this case, R ~  = 47r2((2n + 1)/2) 2. 
The disturbances with n = 0 and transverse wavenumbers (7r/2, 0) and (0, 7r/2) are the most unstable. 

The critical Rayleigh number is R~* -- 7r. Instead of condition (2.10), we obtain 

aMHgaAO/(x*u) > 7r 2. (2.12) 

From here, it follows that,  for the open surface of the porous medium, the critical tempera ture  difference 
for the onset of convection is four t imes as low as that  for the medium covered by an impermeable film, the 

critical wavelength being twice as high. 
(3) The  boundary conditions Vz(0) = 0, Vz~(1) = 0, 0(0) = 0, and 0(1) = 0 are of particular interest. 

In this case, the maximum velocity is at tained when the particles leave the snow bed. Here, no simple 
solutions exist analogous to those described above. The approximate solution to the problem can be obtained 

numerically using the Bubnov-Galerkin  method. 
Since for A = 0 the curve R*(n,  k) is a neutral curve, which separates the regions of unstable and stable 

disturbances, assuming A = 0 in ampli tude equations (2.9), we obtain the following boundary-value problem 

for neutral disturbances: 

(V" - k2V) + k2R*0 = 0; 

(0 r' - k20) + V = 0; 

v (0) = v ' ( 1 )  = 0; 

0(0) = 0(1) = 0. 

(2.13) 

(2.14) 

(2 .15 )  

(2.16) 

The critical Rayleigh numbers  R~ are the eigenvalues of problem (2.13)-(2.16) and the amplitudes of 

critical disturbances are its eigenfunctions. 
For the velocity Vz(z) we adopt  the simplest approximation Vz = sin(Trnz/2). In this case, conditions 

(2.15) are automatical ly fulfilled. The  solution of Eq. (2.14) that  satisfies boundary conditions (2.16) is 

1 ( ,.z sinh(kz)) (2.17) 
O(z) = k: + (7r/2) 2 sin 2 s inhk  ' 

Inserting (2.17) into (2.13), multiplying both  parts of the resulting equation by V(z) and integrating 

it between the limits from 0 to 1, we obtain 

R** = (kS + ~ / 4 ) 2  (2.18) 
k2(1 - 2k coth k/(k 2 + 7r2/4))" 
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As calculations show, the minimum critical Rayleigh numbers for the fimdamental disturbance (n ---- 1) 
is R ~  -- 28.2 and it is a t ta ined for the wavenumber km --- 2.4. - 

Thus, in all the above cases of possible convection modes in snow, the critical Rayleigh number  R~ 
lies between ~r 2 and 47r. These values coincide with the critical Rayleigh numbers for sand saturated with 
water, which were obtained under the assumption that  the heat capacity per unit volume of the liquid (pc).  

equals the heat capacity per unit volume of the porous medium pc [5]. For snow, the values of Rk must  be 
multiplied by M ~ 103. 

For the snow density p -- 0.3 g /cm 3, we obtain the parameter  M -- 1 . 3 . 1 0  -3 and the coefficient 
X* = 2 .7 .10  -3 cm2/sec. In this case, condition (2.12) acquires the form AO > 0 .66 / (kH) .  

Unfortunately, we have no experimental data on the snow permeability a for different types of snow. 
However, on the basis of some model concepts about a porous medium, Shaidegger proposed the theoretical  
formula a = f52/32 [7]. There  is also the Kozeny semi-empirical formula that  has the form o" = f352/(150(1 - 

f )2)  in our notation. For f > 0.6, bo th  formulas give practically identical results. Using them, for the snow 
depth  H = 40 cm, we obtain AO > 16~ and AO > 4~ for 5 = 0.2 cm and 5 = 0.4 cm, respectively. 

From these estimates, it follows that  air convection in snow (in the absence of wind) is possible only for 
a large thickness and low density of the snow bed, e.g., when night chill sets in at dusk on a relatively warm 

day. However, as follows from the theory of propagation of heat waves in snow, daily temperature variations 
can reach only a relatively small depth  in the snow (about  10--15 cm). Therefore, the effect of wind ignored, 
the origination of air convection in a heavy snow bed seems to be highly improbable. 

To estimate the order of magnitude of the velocity Vz (z), we represent AO as the sum of two components,  
A0 _-- A~ k § A01, where AOk is the critical temperature  difference for the onset of air instability given by 
condition (2.11) or (2.12), and A01 is an additional (supercriticai) temperature  difference responsible for 
sustaining a steady convective flow of air in snow. The  steady air velocity in the snow bed V is of order  
(~go ' / v )A~l ,  which, for c~ ..~ 10 -3 cm 2 and A~I = I~ roughly amounts to 4- 10 -2 cm/sec. 

The  convective air flow affects the heat- and mass-transfer processes in snow differently. The effective 
thermal  conductivity of snow due to the air flow is CA)* ~ p % V H ,  which for the above parameters gives 
about  4- 10 -4 cal / (cm,  sec- deg), i.e., it is of the same order as A*. The effective diffusivity is (D>* .-~ V H  = 

1.6 cm2/sec, which is significantly greater than that  of s team in snow without convection. 
These estimates show that  the influence of air convection in snow is greater. This conclusion also orig- 

inates from the following reasoning. The  dimensionless Peclet number that  characterizes the ratio of the con- 
vective term in the diffusion.equation to the inductive te rm is Pe = <V)H/<D>* = <V)H/x*,  where (V) is the 

mean flow velocity. The analogous Peclet number for heat-transfer processes is Pe* .= fp%<V)H/ (pscsx* )  = 

f (pcp/ (pscs) )Pe,  i.e., Pe* ~ 10 - 3 .  Pe. 
Thus,  the relative role of air convection in the mass-transfer processes proceeding in snow is more 

impor tant  than that  in thermal  conduction, which qualitatively agrees with numerous experimental data.  
The  fact tha t  these experimental  da ta  are rather contradictory and demonstrate a considerable scat ter  can 
be explained by the probable occurrence of convective air flows in some experiments bo th  with snow samples 
and with snow beds. 

From the above, it is apparent  that ,  in conducting calculations on water balance and evaluating soil 
freezing depths, one must take into account the possibility of air convection in snow beds and its contributions 

to heat- and mass-transfer processes. 
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